佐賀大学 理工学部電気エネルギー工学コース、電子デバイス工学コース パワー半導体研究室(嘉数研究室)

研究業績

原著論文

  1. [166] S. Sdoeung, K. Sasaki, K. Kawasaki, J. Hirabayashi, A. Kuramata, and M. Kasu, “Polycrystalline defects—origin of leakage current—in halide vapor phase epitaxial (001) β-Ga2O3 Schottky barrier diodes identified via ultrahigh sensitive emission microscopy and synchrotron X-ray topography”,
    Applied Physics Express 14, 036502 (2021).
    https://doi.org/10.35848/1882-0786/abde74
  2. [165] J. Liang, Y. Nakamura, T. Zhan, Y. Ohno, Y. Shimizu, K. Katayama, T. Watanabe, H. Yoshida, Y. Nagai, H. Wang, M. Kasu, and N. Shigekawa,
    “Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications”,
    Diamond & Related Materials 111 (2021) 108207.
    https://doi.org/10.1016/j.diamond.2020.108207
  3. [164] S. –W. Kim, Y. Kawamata, R. Takaya, K. Koyama, and M. Kasu,
    “Growth of high-quality one-inch freestanding heteroepitaxial (001) diamond on (110) sapphire substrate”,
    Appl. Phys. Lett. 117, 202102 (2020).
    https://doi.org/10.1063/5.0024070
  4. [163] Niloy Chandra Saha, K. Takahashi, M. Imamura, and M. Kasu,
    “Observation of nitrogen species at Al2O3/NO2/H-diamond interfaces by synchrotron radiation x-ray photoemission spectroscopy”,
    J. Appl. Phys. 128, 135702 (2020).
    https://doi.org/10.1063/5.0024040
  5. [162] S. Sdoeung , K. Sasaki , K. Kawasaki, J. Hirabayashi, A. Kuramata , T. Oishi , and M. Kasu,
    “Origin of reverse leakage current path in edge-defined film-fed growth (001) β-Ga2O3 Schottky barrier diodes observed by high sensitive emission microscopy”,
    Appl. Phys. Lett. 117, 022106 (2020).
    https://doi.org/10.1063/5.0012794
  6. [161] Niloy Chandra Saha, T. Oishi, S. –W. Kim, Y. Kawamata, K. Koyama, and M. Kasu, “145-MW/cm2 Heteroepitaxial Diamond MOSFETs With NO2 p-Type Doping and an Al2O3 Passivation Layer”,
    IEEE Electron Device Lett. 41, 1066 (2020).
  7. [160] M. Kasu, J. Abdu, S. Hara, S. –W. Choi, K. Ogawa, Y. Chiba, and A. Masuda, “Temperature coefficient of the characteristic values of the charge-accumulation-type potential-induced-degraded n-type mono-crystalline silicon photovoltaic cell”,
    Jpn. J. Applied Phys, 59, 051001 (2020).
    https://doi.org/10.35848/1347-4065/ab8432
  8. [159] J. Liang, Y. Ohno, Y. Yamashita, Y. Shimizu, S. Kanda, N. Kamiuchi, S. –W. Kim, K. Koyama, Y. Nagai, M. Kasu, and N. Shigekawa,
    “Characterization of Nanoscopic Cu/Diamond Interfaces Prepared by Surface-Activated Bonding: Implications for Thermal Management”,
    Appl. Nano Materials 2020, 3, 3, 2455-2462. https://dx.doi.org/10.1021/acsanm.9b02558
  9. [158] R. Sato, Y. Chiba, M. Chikamatsu, Y. Yoshida, T. Taima, M. Kasu, and A. Masuda, “Characteristics change in organic photovoltaics by thermal recovery and photodegradation”,
    Japanese Journal of Applied Physics 59, SCCD04 (2020)
    https://doi.org/10.7567/1347-4065/ab489b
  10. [157] S. Kanda, Y. Shimizu, Y. Ohno, K. Shirasaki, Y. Nagai, M. Kasu, N. Shigekawa, and J. Liang,
    “Fabrication of diamond/Cu direct bonding interface for power device applications”,
    Japanese Journal of Applied Physics 59, SBBB03 (2020)
    https://doi.org/10.7567/1347-4065/ab4f19
  11. [156] R. Sato, T. Ishii, S. Choi, Y. Chiba, M. Kasu, and A. Masuda,
    “Output power behavior of passivated emitter and rear cell photovoltaic modules during early installation stage: influence of light-induced degradation”,
    Japanese Journal of Applied Physics vol.58, pp. 106510 (2019).
  12. [155] M. Kasu, J. Abdu, S. Hara, S. Choi, K. Ogawa, Y. Chiba, A. Masuda, “Temperature dependence of potential-induced degraded p-type mono-crystalline silicon photovoltaic cell characteristics”,
    Japanese Journal of Applied Physics vol.58, pp.101005 (2019).
    https://doi.org/10.7567/1347-4065/ab3f54
  13. [154] S. Masuya, K. Sasaki, A. Kuramata, S. Yamakoshi, O. Ueda, and M. Kasu,
    “Characterization of crystalline defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth and halide vapor-phase epitaxy using synchrotron X-ray topography”,
    Japanese Journal of Applied Physics vol.58, pp.055501 (2019).
    シンクロトロンX線トポグラフィーによるβ型酸化ガリウムの欠陥評価
  14. [153] R. Sato, Y. Chiba, M. Chikamatsu, Y. Yoshida, T. Taima, M. Kasu, and A. Masuda, “Investigation of the power generation of organic photovoltaic modules connected to the power grid for more than three years”,
    Japanese Journal of Applied Physics vol.58, pp. 052001 (2019).
  15. [152] Y. Oshima, K. Kawara, T. Shinohe, T. Hitora, M. Kasu, and S. Fujita,
    “Epitaxial lateral overgrowth alpha-Ga2O3 by Halide Vapor Epitaxy”,
    Appl. Phys. Lett. Mater. vol.7, pp.022503 (2019).
  16. [151] Niloy Chandra Saha, Makoto Kasu,
    “Improvement of the Al2O3/ NO2/ H-diamond MOS FET by using Au gate”,
    Diamond and Related Materials 92 (2019) 81–85.
    金ゲート電極材料によるダイヤFETの特性向上
  17. [150] Niloy Chandra Saha, M. Kasu,
    “Heterointerface properties of diamond MOS structures studied using capacitance–voltage and conductance–frequency measurements”,
    Diamond and Related Materials 91 (2019) 219–224.
  18. [149] J. Liang, S. Masuya, S. –W. Kim, T. Oishi, M. Kasu, N. Shigekawa,
    “Stability of diamond Si bonding interface during device fabrication process”,
    Applied Physics Express vol.12, pp.016501 (2019).
  19. [148] J. Lianga, Y. Zhoub, S. Masuya, F. Gucmann, M. Singh, J. Pomeroy, S.-W Kim, M. Kuball, M. Kasu, and N. Shigekawa,
    “Annealing effect of surface-activated bonded diamond/Si interface”,
    Diamond and Related Materials vol.93, pp.187-192 (2019).
  20. [147] Saha Niloy Chandra, M. Kasu,
    “Band alignment of Al2O3 layer deposited NO and SO2 exposed (001) H-diamond heterointerfaces studied by synchrotron radiation X-ray photoelectron spectroscopy”,
    Phys. Status Solidi A 2018, pp.1800237 (2018).
    NOとSO2p型ドーピングによるMOS界面のバンドアライメントの測定
  21. [146] S. Masuya, M. Kasu,
    “Dislocations in chemical vapor deposition (111) single crystal diamond observed by synchrotron X-ray topography and their relation with etch pits”,
    Diamond and Related Materials vol.90, pp.40-46 (2018).
  22. [145] M. Kasu, J. Abdu, S. Hara, Y. Chiba, A. Masuda,
    “Temperature dependence measurements and performance analyses of high-efficiency interdigitated back-contact, passivated emitter and rear cell, and silicon heterojunction photovoltaic modules”,
    Japanese Journal of Applied Physics vol.57, pp.08RG18 (2018).
  23. [144] A. Boussadi, A. Tallaire, M. Kasu, J. Barjon, J. Achard,
    “Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector”,
    Diamond and Related Materials vol.83, pp.162-169 (2018).
    https://doi.org/10.1016/j.diamond.2018.02.010
  24. [143] T. Oshima, Y. Kato, M. Oda, T. Hitora, M. Kasu,
    “Epitaxial growth of γ-(Alx Ga1-x )O3 alloy films for band-gap engineering”,
    Applied Physics Express vol.10, pp.051104 (2017).
  25. [142] T. Oshima, Y. Kato, N. Kawano, T. Oishi, M. Kasu,
    “Carrier confinement observed at modulation-doped β-(Alx Ga1-x)2O3/Ga2O3 heterojunction interface”,
    Applied Physics Express vol.10, pp.035701 (2017).
  26. [141] M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda,
    “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on β-Ga 2O3”,
    Japanese Journal of Applied Physics vol.56, pp.091101 (2017).
    β型酸化ガリウムの欠陥がSBD特性に与える影響
  27. [140] T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu,
    “Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects”,
    Japanese Journal of Applied Physics vol.56, pp.086501 (2017).
    https://doi.org/10.7567/JJAP.56.086501
  28. [139] S. Masuya, K. Hanada, T. Oshima, H. Sumiya, M. Kasu,
    “Formation of stacking fault and dislocation behavior during the high temperature annealing of single-crystal HPHT diamond”,
    Diamond and Related Materials vol.75, pp.155–160 (2017).
    http://dx.doi.org/10.1016/j.diamond.2017.04.003
    高温アニールによるHPHTダイヤモンドの転位や積層欠陥が運動することを見出す。
  29. [138] J. Liang, S. Masuya, M. Kasu, and N. Shigekawa,
    “Realization of direct bonding of single crystal diamond and Si substrates”,
    Appl. Phys. Lett. vol.110, pp.111603 (2017).
    doi: 10.1063/1.4978666
  30. [137] T. Oishi, N. Kawano, S. Masuya, and M. Kasu,
    “Diamond Schottky barrier diodes with NO2 exposed surface and RF-DC conversion toward high power rectenna”,
    IEEE Electron. Dev. Lett. vol.38, pp.87-90 (2017).
    DOI. 10.1109/LED.2016.2626380
    ダイヤモンドRF-DC変換(レクテナ)の報告
  31. [136] Makoto Kasu,
    “Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation”
    Japanese Journal of Applied Physics vol.56, pp.01AA01 (2017)
    https://doi.org/10.7567/JJAP.56.01AA01.
    ダイヤモンドFETの基盤技術のレビュー。
  32. [135] S. Masuya, K. Hanada, T. Moribayashi, H. Sumiya, M. Kasu,
    “Determination of partial dislocations of stacking fault in (111) single crystal diamond grown on (111) seed crystal by synchrotron X-ray topography”,
    Journal of Crystal Growth vol.468, pp.439–442 (2017).
    http://dx.doi.org/10.1016/j.jcrysgro.2016.11.094
  33. [134] K Hanada, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, and M. Kasu,
    “Origins of etch-pits in (010) β-Ga2O3 single crystals”,
    Japanese Journal of Applied Physics vol.55, pp.1202BG (2016).
    http://doi.org/10.7567/JJAP.55.1202BG
    β型酸化ガリウムのエッチピットの起源
  34. [133] O. Ueda N. Ikenaga, K. Koshi, K. Iizuka, A. Kuramata, K. Hanada, T. Moribayashi, S. Yamakoshi, and M. Kasu,
    “Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process”,
    Japanese Journal of Applied Physics vol.55, pp.1202BD (2016).
    http://doi.org/10.7567/JJAP.55.1202BD
  35. [132] M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda,
    “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes”,
    Japanese Journal of Applied Physics vol.55, pp.1202BB (2016).
    http://doi.org/10.7567/JJAP.55.1202BB
    β型酸化ガリウムSBDの欠陥とリーク電流との関連
  36. [131] T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi and M. Kasu,
    “Formation of indium–tin oxide ohmic contacts for β-Ga2O3”,
    Japanese Journal of Applied Physics. vol.55, pp.1202B7 (2016).
    doi:10.7567/JJAP.55.1202B7
  37. [130] S. Hara, M. Kasu, and N. Matsui,
    “Estimation method of solar cell temperature using meteorological data in mega solar power plant”,
    IEEE Journal of Photovoltaics vol.6, pp.1255 (2016).
  38. [129] Makoto Kasu
    “Diamond epitaxy: basics and applications”,
    Progress in Crystal Growth and Characterization of Materials vol.62, pp.317–328 (2016).
    ダイヤモンドエピタキシャル成長のレビュー論文
  39. [128] S. Masuya, K. Hanada, T. Uematsu, T. Moribayashi, H. Sumiya, and M. Kasu,
    “Determination of the type of stacking faults in single-crystal high-purity diamond with a low dislocation density of < 50 cm−2 by synchrotron X-ray topography”,
    Japanese Journal of Applied Physics vol.55, pp.040303 (2016).
    DOI: 10.7567/JJAP.55.040303
    シンクロトロンX線トポグラフィーによるHPHTダイヤモンドの転位の観察
  40. [127] M. Kasu, K. Hirama, K. Harada, and T. Oishi,
    “Study on capacitance–voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer”,
    Japanese Journal of Applied Physics vol.55, pp.041301 (2016).
    DOI: 10.7567/JJAP.55.041301
  41. [126] T. Oishi, K. Harada, Y. Koga, and M. Kasu,
    “Study on conduction mechanism in highly doped -Ga2O3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes”,
    Japanese Journal of Applied Physics Rapid Communications vol.55, pp. 030305 (2016).
    DOI: 10.7567/JJAP.55.030305
  42. [125] K. Hanada, T. Moribayashi, T. Uematsu, S. Masuya, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, and M. Kasu,
    “Observation of nanometer-sized crystalline grooves in as-grown β-Ga2O3 single crystals”,
    Japanese Journal of Applied Physics Rapid Communications vol.55, pp.030303 (2016).
    DOI: 10.7567/JJAP.55.030303 β型酸化ガリウムのボイドの起源
  43. [124] T. Oishi, Y. Koga, K. Harada, M. Kasu,
    “High-mobility β-Ga2O3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact”,
    Applied Physics Express vol.8, pp.031101 (2015)
    DOI: 10.7567/APEX.8.031101
  44. [123] M. Kasu, R. Murakami, S. Masuya, K. Harada, and H. Sumiya “Synchrotron X-ray topography of dislocations in high-pressure high-temperature-grown single-crystal diamond with low dislocation density”,
    Applied Physics Express vol.7, pp.125501 (2014). DOI: 10.7567/APEX.7.125501
  45. [122] K. Takahashi, M. Imamura, K. Hirama, and M. Kasu,
    “Electronic states of NO2-exposed H-terminated diamond/Al2O3 heterointerface studied by synchrotron radiation photoemission and X-ray absorption spectroscopy”,
    Appl. Phys. Lett. 104, pp.072101 (2014)
    doi.org/10.1063/1.4865929
  46. [121] T. Akasaka, Y. Kobayashi, M. Kasu, H. Yamamoto,
    “Carrier Gas Dependent Evaporation Energy of GaN Estimated from Spiral Growth Rates in Selective-Area Metalorganic Vapor Phase Epitaxy”,
    Appl. Phys. Express 6 105501(2013).
    DOI: 10.7567/APEX.6.105501
  47. [120] Y. Takagi, K. Shiraishi, M. Kasu, H. Sato,
    “Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule”,
    Surface Science, vol.609, pp. 203-206 (2013).
    DOI: 10.1016/j.susc.2012.12.015
  48. [119] H. Sato, M. Kasu,
    “Maximum hole concentration for Hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2”,
    Diamond and Related Materials, vol.31, pp. 47-49. (2013)
    DOI: 10.1016/j.diamond.2012.10.007
  49. [118] Hisashi Sato, Makoto Kasu
    “Electronic properties of H-terminated diamond during NO2 and O3 adsorption and desorption”
    Diamond & Related Materials vol.24 (2012) pp.99–103
  50. [117] K. Hirama, Y. Taniyasu, M. Kasu,
    “Epitaxial growth of AlGaN/GaN high-electron mobility transistor structure on diamond (111) surface”,
    Japanese Journal of Applied Physics, 51 (9), pp. 090114(2012).
    DOI: 10.1143/JJAP.51.090114
  51. [116] K. Hirama, H. Sato, Y. Harada, H. Yamamoto, M. Kasu,
    “Diamond field-effect transistors with 1.3A/mm drain current density by Al2O3 passivation layer”,
    Japanese Journal of Applied Physics, vol.51, pp. 090112 (2012).
    DOI: 10.1143/JJAP.51.090112
  52. [115] K. Hirama, H. Sato, Y. Harada, H. Yamamoto, M. Kasu,
    “Thermally stable operation of h-terminated diamond FETs by NO2 adsorption and Al2O3 passivation”, IEEE Electron Device Letters, vol.33, pp.1111-1113 (2012).
  53. [114] K. Hirama, M. Kasu, Y. Taniyasu,
    “RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond”,
    IEEE Electron Device Letters, vol.33, pp. 513-515 (2012).
  54. [113] H. Sato, M. Kasu,
    “Electronic properties of H-terminated diamond during NO2 and O3 adsorption and desorption”,
    Diamond and Related Materials, vol.24, pp. 99-103 (2012).
  55. [112] K. Kamiya, Y. Ebihara, M. Kasu, K. Shiraishi,
    “Efficient structure for deep-ultraviolet light-emitting diodes with high emission efficiency: A first-principles study of AlN/GaN superlattice”,
    Japanese Journal of Applied Physics, vol.51, pp.02BJ11 (2012).
  56. [111] M. Kasu, H. Sato, K. Hirama,
    “Thermal stabilization of hole channel on H-terminated diamond surface by using atomic-layer-deposited Al2O3 overlayer and its electric properties”
    Applied Physics Express, vo.5, pp. 025701 (2012).
  57. [110] K. Hirama, M. Kasu, Y. Taniyasu,
    “Growth and device properties of AlGaN/GaN high-electron mobility transistors on a diamond substrate”,
    Japanese Journal of Applied Physics, vo.51, pp.01AG09 (2012).
  58. [109] Y. Taniyasu, M. Kasu,
    “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices”,
    Applied Physics Letters, vol. 99 (25), pp. 251112.
  59. [108] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S.-I. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M.S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, K. Semba,
    “Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond”,
    Nature, 478 (7368), pp. 221-224 (2011).
  60. [107] K. Kamiya, Y. Ebihara, K. Shiraishi, M. Kasu,
    “Structural design of AlN/GaN superlattices for deep-ultraviolet light-emitting diodes with high emission efficiency”,
    Applied Physics Letters, vol.99, pp.151108 (2011).
  61. [106] K. Hirama, Y. Taniyasu, M. Kasu,
    “AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy”,
    Applied Physics Letters, vol.98, p. 162112 (2011).
  62. [105] Y. Taniyasu, M. Kasu,
    “Origin of exciton emissions from an AlN p-n junction light-emitting diode”,
    Applied Physics Letters, vol.98, p. 131910 (2011).
  63. [104] K. Hirama, Y. Taniyasu, M. Kasu,
    “Electroluminescence and capacitance-voltage characteristics of singlecrystal n-type AlN (0001) /p-type diamond (111) heterojunction diodes”,
    Appl. Phys. Lett. vol.98, p.011908 (2011).
  64. [103] M. Kasu and M. Kubovic,
    “Arsenic-doped n-type diamond grown by microwave-assisted plasma chemical vapor deposition”,
    Jpn. J. Appl. Phys. vol.49, p.110209 (2010).
  65. [102] M. Kubovic and M. Kasu,
    “Enhancement and stabilization of hole concentration of hydrogen-terminated diamond surface using ozone adsorbates”,
    Jpn. J. Appl. Phys. vol.49, p.110208 (2010).
  66. [101] T. Akasaka, Y. Kobayashi, M. Kasu,
    “Nucleus and spriral growth mechanisms of GaN studied by using selective-area metalorganic vapor phase epitaxy”,
    Appl. Phys. Express vol.3, p.075602 (2010).
  67. [100] Y. Taniyasu and M. Kasu,
    “Surface 210-nm light emission from AlN p-n junction light-emitting diode by A-plane growth orientation”,
    Appl. Phys. Lett. vol.96, p.221110 (2010).
  68. [99] K. Hirama, Y. Taniyasu, M. Kasu,
    “Heterostructure growth of a single-crystal hexagonal AlN (0001) layer on cubic diamond (111) surface”,
    J. Appl. Phys. vol.108, p.013528 (2010).
  69. [98] M. Kubovic, M. Kasu, H. Kageshima,
    "Sorption properties of NO2 gas and its strong influence on hole concentration of H-terminated diamond surfaces",
    Appl. Phys. Lett. vol.96, p.052101 (2010).
  70. [97] T. Akasaka, Y. Kobayashi, and M. Kasu,
    “Supersaturation in nucleus and spiral growth in metal organic vapor phase epitaxy”,
    Appl. Phys. Lett vol.94, p.141902 (2010).
  71. [96] M. Kubovic, M. Kasu, H. Kageshima, F. Maeda,
    “Electronic and surface properties of H-terminated diamond surface affected by NO2 gas”,
    Diamond and Related Materials vol.19, p.889-893 (2010).
  72. [95] K. Ueda and M. Kasu,
    “High temperature operation of boron-implanted diamond field-effect transistors”,
    Jpn. J. Appl. Phys. vol.49, p.04DF16 (2010).
  73. [94] K. Hirama, Y. Taniyasu, M. Kasu,
    “Hexagonal AlN(0001) heteroepitaxial growth on cubic diamond (001)”,
    Jpn. J. Appl. Phys. vol.49, p.04DH01 (2010).
  74. [93] T. Akasaka, Y. Kobayashi, M. Kasu,
    “Step-free GaN hexagons grown by selective-area metalorganic vapor phase epitaxy”,
    Appl. Phys. Express vol.2, p.091002 (2009).
  75. [92] R. A. R. Leute, M. Feneberg, R. Sauer, K. Thonke, S. B. Thapa, F. Scholz, Y. Taniyasu, and M. Kasu,
    “Photoluminescence of highly excited AlN: biexcitons and exciton-exciton scattering”,
    Appl. Phys. Lett. vol.95, p.031903 (2009).
  76. [91] H. Kageshima and M. Kasu,
    “Origin of Schottky barrier modification by hydrogen on diamond”,
    Jpn. J. Appl. Phys. vol.48, p.111602 (2009). 
  77. [90] M. Kubovic and M. Kasu,
    “Improvement of hydrogen-terminated diamond FETs in nitrogen dioxide atmosphere”,
    Appl. Phys. Express vol.2, p.086502 (2009).
  78. [89] J. Achard, F. Silva, O. Brinza, X. Bonnin, V. Lille., R. Issaoui, M. Kasu, A. Gicquel,
    “Identification of etch-pit crystallographic faces induced on diamond surface by H2/O2 etching plasma treatment”,
    Phys. Status Solidi A vol.206, p.1949-1954 (2009).
  79. [88] M. Kubovic, M. Kasu, Y. Yamauchi, K. Ueda, and H. Kageshima,
    “Structural and electrical properties of hydrogen-terminated diamond field-effect transistor”,
    Diamond and Related Materials vol.18, p.796-799 (2009).
  80. [87] C. L. Tsai, Y. Kobayashi, T. Akasaka, and M. Kasu,
    “Molecular beam epitaxial growth of hexagonal boron nitride on Ni (111) substrate”,
    J. Crystal Growth vol.311 p.3054-3057 (2009).
  81. [86] A. Nishikawa, K. Kumakura, M. Kasu, and T. Makimoto,
    “Low-temperature characteristics of the current gain of GaN/InGaN double heterojunction bipolar transistors”,
    J. Crystal Growth vol.311, p.3000-3002 (2009).
  82. [85] Y. Taniyasu and M. Kasu,
    “MOVPE growth of hexagonal aluminium nitride on cubic diamond”,
    J. Crystal Growth vol.311, p.2825-2830 (2009). 
  83. [84] K. Ueda and M. Kasu,
    “Beryllium-doped single-crystal diamond grown by microwave plasma CVD”,
    Diamond and Related Materials vol.18, p.121-123 (2009).
  84. [83] Kenji Ueda, Yoshiharu Yamauchi and Makoto Kasu,
    “Diamond FETs on boron-implanted and high-pressure and high-temperature annealed homoepitaxial diamond”,
    Physica Status Solidi (c) vol.5, no.9, p.3175–3177 (July 2008).
  85. [82] M. Kasu, K. Ueda, H. Kageshima and Y. Taniyasu,
    “Diamond RF FETs and other approaches to electronics”,
    Physica Status Solidi (c) vol.5, no.9, p.3165–3168 (July 2008).
  86. [81] A. Nishikawa, K. Kumakura, M. Kasu and T. Makimoto,
    “High-temperature (300 °C) operation of npn -type GaN/InGaN double heterojunction bipolar transistors”,
    Physica Status Solidi (c) vol.5, no.9, p.2957–2959 (July 2008).
  87. [80] A. Nishikawa, K. Kumakura, M. Kasu, and T. Makimoto,
    “High-temperature characteristics of AlxGa1-xN-based vertical conducting diodes”,
    Japanese Journal of Applied Physics vol.47, p.2838-2840 (2008).
  88. [79] Y. Taniyasu and M. Kasu,
    “Aluminum nitride deep-ultraviolet light-emitting p-n junction diodes”,
    Diamond and Related Materials vol.17, p.1273-1277 (2008).
  89. [78] K. Ueda and M. Kasu,
    “High-pressure and high-temperature annealing of diamond ion-implanted with various elements”,
    Diamond and Related Materials vol.17, p.1269-1272 (2008).
  90. [77] M. Kasu, K. Ueda, and Y. Yamauchi,
    “Gate interfacial layer in hydrogen-terminated diamond field-effect transistors”,
    Diamond and Related Materials vol.17, p.741-744 (2008).
  91. [76] A. Tallaire, M. Kasu, and K. Ueda,
    “Thick diamond layers angled by polishing to reveal defect and impurity depth profiles”,
    Diamond and Related Materials vol.17, p.506-510 (2008).
  92. [75] K. Ueda and M. Kasu,
    "High-pressure and high-temperature annealing effects of boron-implanted diamond",
    Diamond and Related Materials vol.17, p.502-505 (2008).
  93. [74] A. Tallaire, M. Kasu, K. Ueda, and T. Makimoto,
    “Origin of growth defects in CVD diamond epitaxial films”,
    Diamond and Related Materials vol.17, p.60-65 (2008).
  94. [73] M. Kasu, K. Ueda, H. Kageshima, and Y. Yamauchi,
    “RF equivalent-circuit analysis of p-type diamond field-effect transistors with hydrogen surface termination”,
    IEICE Transactions on Electronics vol.E91C, p.1042-1049 (2008).
  95. [72] T. Akasaka, Y. Kobayashi, and M. Kasu,
    “Anisotropic in-plane strains in nonpolar AlN and AlGaN (11-20) films grown on SiC (11-20) substrates”,
    Applied Physics Letters vol.93, p.161908 (2008).
  96. [71] M. Kasu, K. Ueda, Y. Yamauchi, A. Tallaire, and T. Makimoto,
    “Diamond-based RF power transistors: Fundamentals and applications”,
    Diamond and Related Materials vol.16, p.1010-1015, (2007). 
  97. [70] G. M. Prinz, A. Ladenburger, M. Schirra, M. Feneberg, K. Thonke, R. Sauer, Y. Taniyasu, M. Kasu, and T. Makimoto,
    “Cathodoluminescence, photoluminescence, and reflectance study of an aluminum nitride layer grown on silicon carbide substrate”,
    J. Applied Physics vol.101, p.023511, (2007).
  98. [69] Y. Taniyasu, M. Kasu, and T. Makimoto,
    “Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate”,
    J. Crystal Growth vol.298, p.310-315, (2007).
  99. [68] Y. Taniyasu, M. Kasu, and T. Makimoto,
    “Radiation and polarization properties of free-exciton emission from AlN (0001) surface”,
    Applied Physics Letters vol.90, p.261911, (2007).
  100. [67] K. Ueda, M. Kasu, and T. Makimoto,
    “High-pressure and high-temperature annealing as an activation method for ion-implanted dopants in diamond”,
    Applied Physics Letters vol.90, p.122102, (2007).
  101. [66] M. Kasu, K. Ueda, Y. Yamauchi, and T. Makimoto,
    “Gate capacitance-voltage characteristics of submicron-long-gate diamond field-effect transistors with hydrogen surface termination”,
    Applied Physics Letters vol.90, p.043509, (2007).
  102. [65] T. Makimoto, T. Kido, K. Kumakura, Y. Taniyasu, M. Kasu, and N. Matsumoto,
    “Influence of lattice constants of GaN and InGaN on Npn-type GaN/InGaN heterojunction bipolar transistors”,
    Japanese Journal of Applied Physics vol.45, p.3395-3397, (2006).
  103. [64] Y. Taniyasu, M. Kasu, and T. Makimoto,
    “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres”,
    Nature vol.441, p.325-328, (2006).
    窒化アルミニウム(AlN)は直接遷移型半導体の中で最も広いバンドギャップ(6.0eV)を持つ。
    まず高移動度でn型伝導性を示すAlNの結晶成長が可能にし。p型化も実現し、半導体で世界最短波長210nmの電流注入発光を観測した。
  104. [63] Y. Taniyasu, M. Kasu, and T. Makimoto,
    “Increased electron mobility in n-type Si-doped AlN by reducing dislocation density”,
    Applied Physics Letters vol.89, p.182112 (2006).
  105. [62] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe,
    “Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz”,
    IEEE Electron Device Letters vol.27, p.570-572 (2006).
    水素終端ダイヤモンド表面のp型伝導性を用いたFETを作製し、世界最高の遮断周波数を達成し、ダイヤモンドFETのミリ波帯増幅の有用性を実証した。
  106. [61] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe,
    “Characterization of high-quality poly-crystalline diamond and its high FET performance”,
    Diamond and Related Materials vol.15, p.1954-1957 (2006).
  107. [60] K. Ueda, M. Kasu, A. Tallaire, Y. Yamauchi, and T. Makimoto,
    “High-pressure and high-temperature annealing effect of CVD homoepitaxial diamond films”,
    Diamond and Related Materials vol.15, p.1789-1791 (2006).
  108. [59] H. Ye, M. Kasu, K. Ueda, Y. Yamauchi, N. Maeda, S. Sasaki, and T. Makimoto,
    “Temperature dependent DC and RF performance of diamond MESFET”,
    Diamond and Related Materials vol.15, p.787-791 (2006).
  109. [58] M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, and T. Makimoto,
    “High RF output power for H-terminated diamond FETs”,
    Diamond and Related Materials vol.15, p.783-786, (2006).
  110. [57] H. Ye, M. Kasu, K. Ueda, Y. Yamauchi, N. Maeda, S. Sasaki, and T. Makimoto,
    “RF performance of diamond metal-semiconductor field-effect transistors at elevated temperatures and its analysis of equivalent circuit”,
    Japanese Journal of Applied Physics vol.45, p.3609-3613 (2006).
  111. [56] M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, and T. Makimoto,
    “2 W/mm output power density at 1 GHz for diamond FETs”,
    Electronics Letters vol.41, p.1249-1250 (2005).
    高純度ダイヤモンドを用いFETを作製し、現在実用されているGaAs パワーFETの2倍に相当する1GHzの高周波出力電力を得た。ダイヤモンドのマイクロ波帯パワーデバイスの有用性を世界に示した。
  112. [55] T. Makimoto, Y. Yamauchi, T. Kido, K. Kumakura, Y. Taniyasu, M. Kasu, and N. Matsumoto,
    “Strained thick p-InGaN layers for GaN/InGaN heterojunction bipolar transistors on sapphire substrates”,
    Japanese Journal of Applied Physics vol.44, p.2722-2725 (2005).
  113. [54] M. Kasu, M. Kubovic, A. Aleksov, N. Teofilov, R. Sauer, E. Kohn, and T. Makimoto,
    “Properties of (111) diamond homoepitaxial layer and its application to field-effect transistor”,
    Japanese Journal of Applied Physics vol.43, L975-977 (2004).
  114. [53] M. Kubovic, M. Kasu, I. Kallfass, M. Neuburger, A. Aleksov, G. Koley, M. G. Spencer, and E. Kohn,
    “Microwave performance evaluation of diamond surface channel FETs”,
    Diamond and Related Materials vol.13, p.802-807 (2004).
  115. [52] M. Kubovic, A. Denisenko, W. Ebert, M. Kasu, I. Kallfass, and E. Kohn,
    “Electronic surface barrier characteristics of H-terminated and surface conductive diamond”,
    Diamond and Related Materials vol.13, p.755-760 (2004).
  116. [51] A. Aleksov, M. Kubovic, M. Kasu, P. Schmid, D. Grobe, S. Ertl, M. Schreck, B. Stritzker, and E. Kohn,
    “Diamond-based electronics for RF applications”,
    Diamond and Related Materials vol.13, p.233-240 (2004).
  117. [50] M. Kasu, M. Kubovic, A. Aleksov, N. Teofilov, Y. Taniyasu, R. Sauer, E. Kohn, T. Makimoto, and N. Kobayashi,
    "Influence of epitaxy on the surface conduction of diamond film",
    Diamond and Related Materials vol.13, p.226-232 (2004).
  118. [49] Y. Taniyasu, M. Kasu, and T. Makimoto,
    “Electrical conduction properties of n-type Si-doped AlN with high electron mobility ( > 100 cm2 V-1 s-1)”,
    Appl. Phys. Lett. vol.85, p.4672-4674 (2004).
  119. [48] Y. Taniyasu, M. Kasu, and T. Makimoto,
    “Field emission properties of heavily Si-doped AlN in triode-type display structure“,
    Appl. Phys. Lett. vol.84, p.2115-2117, (2004).
  120. [47] T. Akasaka, T. Nishida, Y. Taniyasu, M. Kasu, and T. Makimoto,
    “Reduction of threading dislocations in crack-free AlGaN by using multiple thin SixAl1-xN interlayers”,
    Appl. Phys. Lett. vol.83, p.4140-4142, (2003).
  121. [46] M. Kasu and N. Kobayashi,
    "High mobility and high crystalline-quality chemical-vapor-deposition grown homoepitaxial diamond",
    Diamond and Related Materials vol.12, p.413-417, (2003).
  122. [45] M. Kasu, T. Makimoto, W. Ebert, and E. Kohn,
    "Formation of stacking faults containing microtwins in (111) chemical-vapor-deposited diamond homoepitaxial layers",
    Appl. Phys. Lett. vol.83, p.3465-3467, (2003).
  123. [44] Y. Taniyasu, M. Kasu, T. Makimoto, and N. Kobayashi,
    “Triode-type basic display structure using Si-doped AlN field emitters”,
    Phys. Stat. Sol. (a) vol.200, p.199-201 (2003).
  124. [43] Y. Taniyasu, M. Kasu, K. Kumakura, T. Makimoto, and N. Kobayashi,
    “High electron concentrations in Si-doped AlN/AlGaN superlattices with high average Al content of 80%”,
    Phys. Stat. Sol. (a) vol.200, p.40-43, (2003).
  125. [42] M. Kasu and N. Kobayashi, “High hole mobility (1300cm2/Vs) at room temperature in hydrogen-terminated (001) diamond”,
    Appl. Phys. Lett. vol.80 p.3961-3963 (2002).
  126. [41] Y. Taniyasu, M. Kasu, and N. Kobayashi,
    “Intentional control of n-type conduction for Si-doped AlN and AlxGa1-xN with high Al content”,
    Physica Status Solidi (B) vol.234 p.845-849 (2002).
  127. [40] Y. Taniyasu, M. Kasu, and N. Kobayashi, “Intentional control of n-type conduction for Si-deoped AlN and AlxGa1-xN (0.42<x<1)”,
    Appl. Phys. Lett. vol.81 p.1255-1257 (2002). 
  128. [39] M. Kasu and N. Kobayashi,
    “Spontaneous ridge formation and its effect on field emission of heavily Si-doped AlN”,
    Physica Status Solidi (a) vol.188 p.779-782 (2001).
  129. [38] M. Kasu, Y. Taniyasu, and N. Kobayashi,
    “Formation of solid solution of Al1-xSixN (0<x<12%) ternary alloy”,
    Jpn. J. Appl. Phys. Lett. vol.40 p.L1048-1050 (2001).
  130. [37] Y. Taniyasu, M. Kasu, and N. Kobayashi,
    “Lattice parameters of wurtzite Al1-xSixN ternary alloy”,
    Appl. Phys. Lett. vol.79 p.4351-4353 (2001).
  131. [36] M. Kasu and N. Kobayashi,
    “Field emission characteristics and large current density of heavily Si-doped AlN and AlxGa1-xN (0.38<x<1) ternary alloy”,
    Appl. Phys. Lett. vol.79 p.3642-3644 (2001).
  132. [35] M. Kasu and N. Kobayashi,
    “Spontaneous ridge-structure formation and large field emission of heavily Si-doped AlN”,
    Appl. Phys. Lett. vol.78 p.1835-1837 (2001).
  133. [34] M. Kasu and N. Kobayashi,
    "Large electron field emission from high-quality heavily Si-doped AlN grown by MOVPE”,
    J. Crystal Growth vol.221 p.739-742 (2000).
  134. [33] M. Kasu and N. Kobayashi,
    "Large and stable field emission current from heavily Si-doped AlN grown by metalorganic vapor phase epitaxy",
    Appl. Phys. Lett. vol.76 p.2910-2912 (2000).
  135. [32] M. Kasu, T. Makimoto, and N. Kobayashi,
    "Selectivity mechanism of all-UHV STM-based selective area growth",
    Appl. Surf. Sci. vol.130, p.452-456 (1998).
  136. [31] M. Kasu, N. Kobayashi, H. Tanaka, and O. Mikami,
    "Nitrogen radical adsorption on InAs (001) surface studied by scanning tunneling microscopy and x-ray
    photoelectronic spectroscopy",
    Appl. Phys. Lett. vol.73 p.3754-3756 (1998).
  137. [30] M. Kasu and N. Kobayashi,
    "Surface kinetics of metalorganic chemical vapor epitaxy -surface diffusion, nucleus formation, sticking at steps-",
    J. Crystal Growth vol.174 p.513-521 (1997).
  138. [29] M. Kasu, T. Makimoto, and N. Kobayashi,
    "Nanometer-scale selective area growth on nitrogen-passivated surface using STM and MOMBE",
    J. Crystal Growth vol.173, p.589-591 (1997).
  139. [28] M. Kasu and N. Kobayashi,
    "Surface diffusion kinetics of GaAs and AlAs metalorganic chemical vapor epitaxy",
    J. Crystal Growth vol.170 p.246-250 (1997).
  140. [27] M. Kasu, T. Makimoto, and N. Kobayashi,
    "Selective-area GaAs growth using nitrogen passivation and scanning tunneling microscopy modification in a nanometer scale",
    Appl. Phys. Lett. vol.70 p.1161-1163 (1997).
  141. [26] M. Kasu, T. Makimoto, and N. Kobayashi,
    "Nanoscale patterning and selective growth of GaAs surfaces by ultra-high vacuum scanning tunneling microscopy",
    Jpn. J. Appl. Phys. vol.36 p.3821-3826 (1997).
  142. [25] T. Makimoto, M. Kasu, J. L. Benchmol, and N. Kobayashi,
    "In-situ STM observation of GaAs surfaces after nitridation",
    Jpn. J. Appl. Phys. vol.36, p.1733-1735 (1997).
  143. [24] M. Kasu, T. Makimoto, and N. Kobayashi,
    "Scanning tunneling microscopy modification of nitrogen-passivated GaAs (001) surfaces on a nanometer scale",
    Appl. Phys. Lett. vol.68, p.1811-1813 (1996).
  144. [23] M. Kasu and N. Kobayashi,
    "Anisotropic surface morphology of GaAs (001) surfaces passivated with nitrogen radicals",
    Appl. Phys. Lett. vol.68, p.955-957 (1996).
  145. [22] M. Kasu and N. Kobayashi,
    "Surface diffusion of AlAs on GaAs in metalorganic chemical vapor-phase epitaxy studied by high-vacuum scanning tunneling microscopy",
    Appl. Phys. Lett. vol.67, p.2842-2844 (1995).
  146. [21] M. Kasu and N. Kobayashi,
    "Surface-diffusion and step-bunching mechanisms of metalorganic vapor-phase epitaxy studied by high-vacuum scanning tunneling microscopy",
    J. Appl. Phys. vol.78, p.3026-3035 (1995) [Errata; J. Appl. Phys. vol.79, p.1822-1823 (1996)].
  147. [20] M. Kasu and N. Kobayashi,
    "Scanning tunneling microscopy study of two-dimensional nuclei on GaAs grown by metalorganic chemical vapor deposition",
    J. Crystal Growth vol.145, p.120-125 (1994).
  148. [19] M. Kasu and N. Kobayashi,
    "Scanning tunneling microscopy study of GaAs step structures on vicinal substrate grown by metalorganic chemical vapor deposition",
  149. [18] M. Kasu, N. Kabayashi, and H. Yamaguchi,
    "Scanning tunneling microscopy observation of monolayer steps on GaAs (001) vicinal surfaces grown by metalorganic chemical vapor deposition",
    Appl. Phys. Lett. vol.63, p.678-680 (1993).
  150. [17] M. Kasu and N. Kobayashi,
    "Equilibrium multiatomic step structure of GaAs (001) vicinal surfaces grown by metalorganic chemical vapor deposition",
    Appl. Phys. Lett. vol.62, p.1262-1264 (1993).
  151. [16] H. Yamaguchi, M. Kasu, T. Sueyoshi, T. Sato, and M. Iwatsuki,
    "Observation of GaAs (001) surface at high temperatures by scanning tunneling microscopy",
    J. Crystal Growth vol.127, p.1064-1067 (1993).
  152. [15] T. Fukui, H. Saito, M. Kasu, and S. Ando,
    "MOCVD methods for fabricating GaAs quantum wires and quantum dots",
    J. Crystal Growth vol.124, p.493-496 (1992).
  153. [14] T. Fukui, K. Tsubaki, H. Saito, M. Kasu, and T. Honda,
    "Fractional layer superlattices grown by MOCVD and their device application",
    Surface Science vol.267, p.588-592 (1992).
  154. [13] M. Kasu, H. Ando, H. Saito, and T. Fukui,
    "Polarized photoluminescence of fractional layer superlattices",
    Surface Science vol.267, p.300-303 (1992).
  155. [12] M. Kasu and T. Fukui,
    "Multi-atomic steps on metalorganic chemical vapor deposition-grown GaAs vicinal surfaces studied by atomic force microscopy",
    Jpn. J. Appl. Phys. vol.31, p.L864-866 (1992).
  156. [11] M. Kasu, H. Saito, and T. Fukui,
    "Step-density dependence of growth rate on vicinal surface of MOCVD",
    J. Crystal Growth vol.115, p.406-410 (1991).
  157. [10] M. Kasu, R. Rao, S. Noda, and A. Sasaski,
    "DX centers in AlxGal-xAs bulk alloy, AlAs/GaAs ordered and disordered superlattices",
    J. Electron. Materials vol.20, p.691-693 (1991).
  158. [9] M. Kasu, T. Yamamoto, S. Noda, and A. Sasaki,
    "Photoluminescence lifetime of AlAs/GaAs disordered superlattices",
    Appl. Phys. Lett. vol.59, 800-802 (1991).
  159. [8] M. Kasu, H. Ando, H. Saito, and T. Fukui,
    "Anisotropy in photoluminescence and absorption spectra of fractional layer superlattices",
    Appl. Phys. Lett. vol.59, p.301-303 (1991).
  160. [7] M. Kasu, T. Yamamoto, S. Noda, and A. Sasaki,
    "Absorption spectra and photoluminescent processes of AlAs/GaAs disordered superlattices", Jpn. J. Appl. Phys. vol.29, p.828-834 (1990).
  161. [6] M. Kasu, T. Yamamoto, S. Noda, and A. Sasaki,
    "Electroluminescence of AlAs/GaAs disordered superlattices",
    Jpn. J. Appl. Phys. vol.29, p.L1588-1590 (1990).
  162. [5] M. Kasu, T. Yamamoto, S. Noda, and A. Sasaki,
    "Photoluminescent properties of AlAs/AlxGa1-xAs (x=0.5) disordered superlattices",
    Jpn. J. Appl. Phys. vol.29, p.L1055-1058 (1990).
  163. [4] A. Sasaki, M. Kasu, and S. Noda,
    "Optical properties of disordered superlattices",
    J. Electron. Materials vol.19, p.11-12 (1990).
  164. [3] T. Yamamoto, M. Kasu, S. Noda, and A. Sasaki,
    "Photoluminescent properties and optical absorption of AlAs/GaAs disordered superlattices",
    J. Appl. Phys. vol.68, p.5318-5323 (1990).
  165. [2] M. Kasu, Sz. Fujita, and A. Sasaki,
    "Observation and characterization of deep donor centers (DX centers) in Si-doped AlAs",
    J. Appl. Phys. vol.66, p.3042-3046 (1989).
  166. [1] A. Sasaki, M. Kasu, T. Yamamoto, and S. Noda,
    "Proposal and experimental results of disordered crystalline semiconductors",
    Jpn. J. Appl. Phys. vol.28, p.L1249-1251 (1989).

被引用回数が高い論文

  1. [1] Y. Taniyasu, M. Kasu, and T. Makimoto,
    “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres”,
    Nature vol.441, p.325-328, (2006).

窒化アルミニウム(AlN)は直接遷移型半導体の中で最も広いバンドギャップ(6.0eV)を持つ。
まずAlNの貫通転位が電子移動度を制限していることを明らかにし、成長表面で吸着原子の表面拡散を促進させることにより、高移動度でn型伝導性を示すAlNの結晶成長が可能になった。つぎにp型化を実現し、半導体で世界最短波長210nmの電流注入発光を観測した。

  1. [2] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J.Twitchen, G. A. Scarsbrook, and S. E. Coe,
    “Diamond FET using high-quality polycrystalline diamond with fT of 45 GHzand fmax of 120 GHz”,
    IEEE Electron Device Letters vol.27, p.570-572 (2006).

水素終端ダイヤモンド表面のp型伝導性を用いたFETを作製し、世界最高の遮断周波数を達成し、ダイヤモンドFETのミリ波帯増幅の有用性を実証した。
水素終端ダイヤモンド表面の正孔生成がNO2吸着により起こることを実験的に明らかにし、水素終端ダイヤモンド表面に極めて高濃度の二次元正孔を生成させる成果に繋がった。

  1. [3] M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, and T. Makimoto,
    “2 W/mm output power density at 1 GHz for diamond FETs”,
    Electronics Letters vol.41, p.1249-1250 (2005).

高純度ダイヤモンドを用いFETを作製し、現在実用されているGaAs パワーFETの2倍に相当する1GHzの高周波出力電力を得た。ダイヤモンドのマイクロ波帯パワーデバイスの有用性を世界に示した。