[Achievement 1] Y. Taniyasu, M. Kasu, and T. Makimoto, 
          "An aluminium nitride light-emitting diode with a wavelength of 210
          nanometres",
          Nature vol.441, p.325-328, (2006), Citation time 306. 
          
          Aluminum nitride (AlN) is a direct-bandgap semiconductor with the widest
          energy gap (6.0 eV). First we found that its electron mobility is limited
          by dislocations in crystal, and then we reduced dislocation density in
          AlN crystal, and achieved high mobility for n-type semiconductor. Next,
          we achieved p-type AlN and fabricated LED structure, and demonstrated light
          emission at the shortest wavelength of 210 nm.
[Achievement 2] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters,
          D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe,
          "Diamond FET using high-quality polycrystalline diamond with fT of
          45 GHz and fmax of 120 GHz",
          IEEE Electron Device Letters vol.27, p.570-572 (2006), Citation time 35.
          
          
          We fabricated p-type diamond field-effect transistors (FETs) of hydrogen-terminated
          diamond and achieved the highest power-gain cut-off frequency (fmax) and
          demonstrated power amplification in millimeter wave range.
[Achievement 3] M. Kasu, M. Kubovic, A. Aleksov, N. Teofilov, Y. Taniyasu,
          R. Sauer, E. Kohn, T. Makimoto, and N. Kobayashi, 
          "Influence of epitaxy on the surface conduction of diamond film"
          
          Diamond and Related Materials vol.13, p.226-232 (2004), Citation time 35.
          
          We achieved high power-gain cut-off frequency of H-terminated diamond transistors,
          and specified how crystal imperfections, such as defects and impurities,
          influence device properties.
[Achievement 4] Y. Taniyasu, M. Kasu, and T. Makimoto, 
          gField emission properties of heavily Si-doped AlN in triode-type display
          structureg,
          Appl. Phys. Lett. vol.84, p.2115-2117 (2004) , Citation time 43.
          
          Aluminum nitride (AlN) has a property of negatively electron affinity (NEA).
          By silicon (Si) doping, we supplied electron to AlN crystal, and achieved
          high-efficient electron field emission.
[Achievement 5] Y. Taniyasu, M. Kasu, and N. Kobayashi, 
          "Intentional control of n-type conduction for Si-deoped AlN and AlGaN
          (0.42<x<1)",
          Appl. Phys. Lett. vol.81 p.1255-1257 (2002), Citation time 69. 
          
          First report of n-type conductive aluminum nitride (AlN). By Si doping
          we achieved n-type conduction. We clarified Si doping mechanism in AlN
          When Si concentration exceeds a specific value, Si atoms enter nitrogen
          site, and compensate Si donors.
[Achievement 6] M. Kasu and N. Kobayashi,
          "Surface-diffusion and step-bunching mechanisms of metalorganic vapor-phase
          epitaxy studied by high-vacuum scanning tunneling microscopy"
          J. Appl. Phys. vol.78, p.3026-3035 (1995) [Errata; J. Appl. Phys. vol.79,
          p.1822-1823 (1996)] , Citation time 53.
          
          We connected high-vacuum chamber to metalorganic vapor phase epiaxy (MOVPE)
          system, enabling to investigate MOVPE as-grown surface atomic structures
          by high-vacuum scanning tunneling microscopy (STM) without exposing the
          surface to air. We observed two-dimensional nuclei on the MOVPE as-grown
          surface. From the measurement of two-dimensional nucleus density, we estimated
          surface diffusion coefficient.
[Achievement 7] M. Kasu and N. Kobayashi, 
          "Equilibrium multiatomic step structure of GaAs (001) vicinal surfaces
          grown by metalorganic chemical vapor deposition", 
          Appl. Phys. Lett. vol.62, p.1262-1264 (1993), Citation time 88.
          
          We observed step-bunching phenomena on MOVPE-grown vicinal surface, and
          clarify the mechanism.
[Achievement 8] M. Kasu and T. Fukui,
          "Multi-atomic steps on metalorganic chemical vapor deposition-grown
          GaAs vicinal surfaces studied by atomic force microscopy",
          Jpn. J. Appl. Phys. vol.31, p.L864-866 (1992) ,Citation time 53.
          
          We observed step bunching phenomena on MOVPE-grown vicinal surface and
          found that B-type steps are straighter than A-type steps. The tendency
          is the opposite to MBE case. This phenomenon is explained in terms of c(4x4)
          surface reconstruction on MOVPE-grown surface, and anisotropic surface
          diffusion and sticking coefficient.
[Achievement 9] M. Kasu, T. Yamamoto, S. Noda, and A. Sasaki, 
          "Absorption spectra and photoluminescent processes of AlAs/GaAs disordered
          superlattices",
          Jpn. J. Appl. Phys. vol.29, p.828-834 (1990) ,Citation time 41.
          
          In disordered superlattices, we observed increased luminescence intensity
          by carrier localization effect.
[Achievement 10] T. Yamamoto, M. Kasu, S. Noda, and A. Sasaki, 
          "Photoluminescent properties and optical absorption of AlAs/GaAs disordered
          superlattices",
          J. Appl. Phys. vol.68, p.5318-5323 (1990) ,Citation time 99.
          
          We proposed disordered superlattice, which is atomically repeated layers
          with irregular thicknesses, enabling to investigate atomic disordering
          effect in alloy semiconductors.
Honjo-machi, Saga 840-8502
      Japan
TEL +81-952-28-8648
      FAX +81-952-28-8648
      E-mail kasu(at)cc.saga-u.ac.jp